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NON-EQUILIBRIUM MODELING OF COMPLEX TURBULENT FLOWS 

Charles G. Speziale 

Aerospace & Mechanical Engineering Department 

Boston University 

Boston, MA 02215 

ABSTRACT 

The non-equilibrium modeling of complex turbulent flows is considered from a theoretical 

standpoint. Both two-equation models and full second-order closures are considered. Non- 

equilibrium two-equation models can be obtained via a regularization scheme based on a 

Pade' approximation. Second-order closures that are extended to non-equilibrium flows are 

obtained in the same fashion. Applications to rapidly distorted flows - including homoge- 

neous shear flow and homogeneous plane strain turbulence - are considered. The prospects 

for future research are discussed in detail. 



1. INTRODUCTION 

Much research has been accomplished during the past five years. All of the proposed work 

has been completed. It was proposed to develop non-equilibrium pressure-strain models as 

well as to incorporate non-equilibrium vortex stretching and anisotropic dissipation. During 

the last two years, a new methodology for large-eddy simulations (LES) was to be developed. 

The starting point of this research was to develop explicit algebraic stress models that are 

suitable for non-equilibrium turbulent flows. Explicit algebraic stress models, which are in 

the form of anisotropic eddy viscosity models, are normally obtained from full second-order 

closures in the limit of equilibrium turbulent flows under certain specific assumptions. The 

fact that explicit algebraic stress models - which are single-valued - are derived in two 

ways was first recognized.   Either the ratio of production to dissipation can be set equal 

to a constant in the coefficients or the consistency condition - with its associated cubic 

equation - can be solved.   When the ratio of production to dissipation is set equal to a 

constant a singularity arises.   This necessitates the use of a regularization procedure that 

removes the singularity.  Far from being a deficiency, this regularization has turned out to 

be a virtue.   By using a two-sided Pade approximation, it is possible to develop models 

that are indistinguishable from the original model in equilibrium turbulent flows where it 

formally applies but then the model applies to the far from equilibrium rapid distortion case 

which is normally approximated by Rapid Distortion Theory (RDT). Thus, non-equilibrium 

turbulent flows can be described by a regularization based on a Pade approximation.  The 

results collapsed homogeneous shear flow in the RDT limit which is far from equilibrium. 

Plane strain turbulence was also considered with success. This was done while maintaining 

agreement for equilibrium turbulent flows by starting with an explicit algebraic stress model 

that does well for such flows (this is easy to accomplish since explicit algebraic stress models 

formally apply in the equilibrium limit for which the regularization is negligible). By using 

this approach, a whole new way of developing second-order closure models, by a relaxation 

time approximation was presented. It was systematically and fully shown that second-order 

closure models can be developed by conducting a relaxation time approximation of the non- 

equilibrium algebraic stress models developed herein. By using the form suggested by this 

approach for the rapid pressure-strain correlation, a non-equilibrium second-order closure 

was developed which is of the traditional form except that strain-dependent coefficients are 



used. For near equilibrium turbulent flows it collapses to the SSG model - a second-order 

closure which does well for such flows; it is able to describe non-equilibrium turbulent flows 

in the rapid distortion limit: both homogeneous shear flow and plane strain turbulence - 

the two most basic benchmark flows - are well described in the RDT limit as will be shown. 

Thus, a new methodology is at hand to develop non-equilibrium second-order closure models. 

Since, the non-equilibrium features are manifested through strain-dependent coefficients, this 

approach is easy to implement in any computer codes that implement traditional second- 

order closure models. 

An entirely new approach based on a combined time-dependent RANS/LES approach 

was developed based on this methodology in the last two years. This approach is only 

slightly more expensive to implement than traditional approaches. It is critical that these 

two approaches be combined since the best that one can currently do at the extremely high 

Reynolds numbers that occur in many flows of technological interest is a time-dependent 

Reynolds-averaged Navier-Stokes (RANS) calculation. Subgrid scale models were developed 

that go continuously to Reynolds stress models in the coarse mesh/infinite Reynolds number 

limit. This was accomplished by parameterizing these models by the ratio of the grid size 

to the Kolmogorov length scale that determines how well resolved a computation is in the 

numerical simulation of turbulence and is the proper parameter to use. A RANS calculation 

is done in parallel to get an estimate of the Kolmogorov length scale from the dissipation rate 

equation. Furthermore, the subgrid scale models have a dependence on rotational strains 

which can be extremely important. Rotations can severely impede the cascade leading to 

subgrid scale models that must be substantially less dissipative. The initial tests of this 

idea in the boundary layer were quite successful so further tests were conducted. With 

these ideas, it is possible to conduct an LES through transition and for an extremely high 

Reynolds number boundary layer a RANS calculation is automatically recovered. This is 

quite exciting and holds the potential to achieve the long held dream of continuously going 

from an LES to a RANS computation. 

2. RESEARCH ACCOMPLISHED 

For two-dimensional mean turbulent flows, explicit algebraic stress models - obtained 

from second-order closures by integrity bases techniques - take the simplified form (see 



Gatski and Speziale 1993): 

Tü =   \K8ij- aiTSij 

where 

3 - 2T72 + 6£2 

K3 — — /,\ 
+a2 —z-{Sikükj + Sjküki) W 

-&3— [SikSkj - -SkiSkiSij) 

ai=(±-C2)g,    «i = \fac2){2-CA)g> 

a3 = (i - C2) (2 - C3)g\    g = fa + | - l)  * 

-^f(^)1/2'    ^Sf(^)1/2 (2) 

and where 5:J- and 57y are the mean rate of strain and mean vorticity tensors with the con- 

stants G\ - C4 provided by the pressure-strain model; C\ is the Rotta constant and K and e 

are the turbulent kinetic energy and dissipation rate. In (2), the ratio of production to dissi- 

pation V/e that appears in the coefficient g can be approximated by its constant equilibrium 

value (a value of one has been recently chosen with success).  The explicit solution for T,-J 

given in (1) formally constitutes an anisotropic eddy viscosity model with strain-dependent 

coefficients (earlier anisotropic eddy viscosity models erroneously had constant coefficients; 

see Yoshizawa 1984, Speziale 1987, and Rubinstein and Barton 1990). As demonstrated by 

Gatski and Speziale (1993) and first derived by Pope (1975), the explicit ASM given in (1) 

yields results that are virtually indistinguishable from the corresponding full second-order 

closure for turbulent flows that are close to equilibrium.   While (1) provides an excellent 

description of near-equilibrium turbulent flows, it is rather obvious that it fails for turbu- 

lent flows that are far from equilibrium where it is possible for a singularity to arise (for 

sufficiently large values of 7/, the denominator 3 - 2n2 + 6£2 can vanish; a singularity, thus, 

arises when V/e is set to a constant value).  Since (1) is the explicit solution to the tradi- 

tional algebraic stress models, it is now clear why such models have, in many applications 

to complex turbulent flows, given rise to divergent computations (see Gatski and Speziale 

1993). By utilizing the fact that for equilibrium turbulent flows rj is substantially less than 



one, Gatski and Speziale (1993) introduced the approximation 

3 .. 3(l + 772) (3) 

3 - 2T/
2
 + 6£2 ~ 3 + v2 + 6£ V + 6£2 

and it is a formally valid approximation in equilibrium which is based on a one-sided Taylor 

expansion and removes the singularity. The use of (3) allows the model to be computable 

through highly non-equilibrium regimes. While (3) makes the model well behaved in far from 

equilibrium turbulent flows, it is not expected to have any predictive capabilities therein. 

This deficiency can be overcome by implementing a formal two-sided Pade approximation 

that establishes some limited consistency with Rapid Distortion Theory (RDT) which applies 

to strongly strained turbulent flows that are far from equilibrium. While (1) provides an 

excellent description of near-equilibrium turbulent flows, it is rather obvious that it fails for 

turbulent flows that are far from equilibrium where it is possible for a singularity to arise as 

discussed before (for sufficiently large values of 77, the denominator 3 - 2T7
2
 + 6£2 can vanish 

when V/e is set to a constant). Since (1) is the explicit solution to the traditional algebraic 

stress models, it is now clear why such models have, in many applications to complex turbu- 

lent flows, given rise to to non-convergent computations (this was discussed in more detail in 

Speziale 1997a). By utilizing the fact that for equilibrium turbulent flows 77 is substantially 

less than one, Gatski and Speziale (1993) introduced the approximation described in (3) 

which removes the singularity. The use of (3) allows the model to be computable through 

highly non-equilibrium regimes. While (3) makes the model well behaved in far from equi- 

librium flows, it would not be expected to have any predictive capabilities therein. This 

deficiency can be overcome as discussed above by implementing a formal two-sided Pade ap- 

proximation that establishes some limited consistency with Rapid Distortion Theory (RDT) 

which applies to strongly strained turbulent flows that are far from equilibrium. 

Homogeneous shear flow will be the primary focus of our attention where the mean 

velocity gradient tensor takes the form 

dvi/dxj = SSnSfl. (4) 

Plane strain turbulence will also be considered. In (4), S is a constant shear rate that is 

applied uniformly starting at time t = 0, to an initially isotropic turbulence with turbulent 

kinetic energy K0 and dissipation rate e0.   For strongly sheared homogeneous turbulence 



- where SK0/e0 > 1 - the RDT solution constitutes an excellent approximation for early 

times (i.e., at least for some significant fraction of an eddy turnover time). The transport 

equation for the turbulent kinetic energy - which is obtained by contracting the Reynolds 

stress transport equation - takes the form 

K = V - e (5) 

in homogeneous shear flow, where V = -T12S is the turbulence production. In the RDT 

limit, where SK0/e0 -» oo, and the dissipation rate in (5) can be neglected leading to the 

dimensionless form 

k* = -^ (6) 

where K* = K/K0 and K* is its derivative with respect to the dimensionless time, t* = St. 

The long time asymptotic solution to the RDT equations has been obtained analytically (see 

Rogers 1991). It is given by 

^ = -2ln2 (7) 

K* = {2ln2)t* (8) 

2 1 
&11 = Ö'       ^22 = ^33 = ~ö (9) 

in the limit as t* -+ oo. This RDT solution corresponds to a linear (algebraic) growth of the 

turbulent kinetic energy with an associated one component state of turbulence as exemplified 

by (9). 

The long-time asymptotic solution for RDT is not of value, in and of itself, since the 

assumptions underlying the RDT approximation break down for large times. However, when 

combined with (6) - (9) it does provide us with the following useful information: (a) the 

RDT solution for T12/K0 starts from zero and remains bounded and of order one, and (b) 

the normal Reynolds stress anisotropies try to approach, from zero, a one component state 

where bn = 2/3, b22 = -1/3 and 633 = -1/3. DNS results of Lee, et al. (1990) indicate 

that this happens in a fraction of an eddy turnover time. This places a major constraint on 

the explicit ASM, given in (1), which can be re-written in the form 

2 K2 — K3 — 
Tij = -KSij - ctl—Sij - a*2—(Sikükj 

3 (10) 

+Sjkuki) + «3~T [SikSkj - ^SkiSkiSij) 



where . 

°< = a' (3-2^ + 6^/ 

for i = 1,2,3. From (8), it is clear that 

3h-H (¥)(£)■ (11) 

Since, in the short-time RDT solution, SK/e -> 00 while K/K0 remains of order one, it is 

obvious that 
1 

a; ~ - (12) 

where we have made use of the fact that 77 ex ( oc Stf/e in homogeneous shear flow. It 

is clear that the equilibrium model - encompassed by (1) - violates this constraint. This 

problem can be remedied via a Pade approximation whereby (1) is replaced by a regularized 

expression that is approximately equal to (1) for the near-equilibrium case (where 77 < 1) 

but has the correct asymptotic behavior, given above, for 77 > 1. One such approximation, 

which is accurate to Ofa4), is as follows (see Speziale and Xu 1996): 

a. _    (i + g'Xi + ftfl + jy (13) 
ai ~ (1 + 2£2)(1 + 2f + 7/2 + 6/W) 

where ß1 is an arbitrary constant.   Equation (13) is regular for all values of 7/ and £.   It 

yields results that are within one percent of (1) for near-equilibrium turbulent flows (where 

the latter is valid) and has the correct asymptotic behavior of aj ~ I/77 for 77 > 1.   The 

equations given above suggest that ßi is in the range of 5 - 10. 

While the regularized expression (3), derived by Gatski and Speziale (1993), is asymp- 

totically consistent for the bn, b22 and 633 components, it does not yield the correct tendency 

to a one component state in the RDT limit. This can be remedied by the alternative form, 

obtained by a Pade approximation that is accurate to 0(7?4) (see Speziale and Xu 1996): 

. _ (i + ^2)(i + v4) + lv\ (14) 
a,'-(l + 2£2)(l + 2£2+ßi76)   * 

where # is an arbitrary constant (i = 2,3). Equation (14) represents an excellent approx- 

imation to (1) for near-equilibrium turbulent flows.  It is regular for all values of 77 and £, 

has the correct asymptotic behavior for 77 > 1 and, for values of ß2 and ß3 of approximately 

5, predicts an approach to a one component state consistent with RDT of homogeneous 



shear flow. The constants ßu ß2 and ß3 are approximately 7, 6, and 4. The two-equation 

model can be integrated to a solid boundary with no wall damping (see Speziale and Abid 

1995). By including a vortex stretching term, the model can be further regularized and a 

value of one can be chosen for the ratio of production to dissipation (see Abid and Speziale 

1996). Furthermore, the inclusion of anisotropic dissipation can be useful in describing more 

turbulence physics by a simple means (see Speziale and Gatski 1997 and Xu and Speziale 

1996). This, furthermore, completes the proposed research. 

Second-order closures that are suitable for non-equilibrium turbulent flows can then be 

obtained by conducting a relaxation time approximation around the non-equilibrium ex- 

tension of the explicit ASM. The idea of obtaining second-order closures by a relaxation 

time approximation around an equilibrium algebraic model is probably first attributable to 

Saffman (1977) (this stood in contrast with the more commonly adopted approach of directly 

modeling the higher-order correlations that appear in the Reynolds stress transport equation 

which was popular even before Launder, Reece and Rodi 1975). However, Saffman (1977) 

implemented this relaxation time approximation about a simple, nonlinear algebraic repre- 

sentation for the Reynolds stress tensor. In contrast to this approach, we have implemented 

a relaxation time approximation about the non-equilibrium extension of the explicit ASM 

written in terms of the Reynolds stress anisotropy tensor (in strained homogeneous turbulent 

flows, it is only the Reynolds stress anisotropy that equilibrates; the Reynolds stresses grow 

exponentially). Hence, we have proposed the relaxation model 

k = -Cnfa - ig*) (15) 

where 2 

2     £ Z     C (16) 

+ 2a3— [SikSkj ~ ^SklSklSijj 

is the non-equilibrium extension of (1), written in terms of the anisotropy tensor, with a^-a^ 

given by their non-equilibrium forms (13) - (14). In (15), CR is a dimensionless relaxation 

coefficient. Consistency with the Crow (1968) constraint requires that: 



in an initially isotropic turbulence subjected to a mild strain. Of course, for strongly strained 

turbulent flows, (17) must be regularized. One preliminary form that is being considered is 

given by 
8   1 +1?2 + 6/W fl8) 

R~ 15ai H-§77
2
 + 6T?

5- ^    ' 

When (15) is rearranged into a transport equation for the Reynolds stress tensor, it yields 

a model that differs from the traditional models in a notable way: the rapid pressure- 

strain correlation depends linearly on the anisotropy tensor, but depends nonlinearly on the 

invariants of the rotational and irrotational strain rates, i.e., 

Ma» = Mijkl(b]V,0 (19) 

to the lowest order. A preliminary form is currently being considered and it appears to lead 

to a considerable improvement. 

In order to establish a benchmark for the performance of the models in near-equilibrium 

turbulent flows, we will first consider the test case of Bardina, Ferziger and Reynolds (1983) 

for homogeneous shear flow. This corresponds to an initial condition of SK0/e0 = 3.38 which 

is not far removed from the equilibrium value of SK/e which is in the range of 5 to 6. In 

Figure 1, the time evolution of the turbulent kinetic energy K* obtained from the SSG model 

and the explicit ASM based on the SSG model are compared with the large-eddy simulation 

(LES) results of Bardina, Ferziger and Reynolds (1983). It is clear from these results that 

both the SSG model (see Speziale, Sarkar and Gatski 1991) and its equilibrium ASM do an 

excellent job of capturing the LES results since they are close to equilibrium. This is not so 

of the standard K - e model of Launder and Spalding (1974) which has a growth rate that 

is somewhat too large. 

Now we will consider the far from equilibrium test case where SK0/e0 = 50; for this 

strongly sheared case, RDT constitutes a good approximation for early times. In Figure 2, 

the time evolution of the turbulent kinetic energy predicted by the models is compared with 

the RDT solution (Rogers 1991 and Rogers, private communication). It is clear from these 

results that none of the models are able to predict the correct trend (DNS results have tended 

to indicate that, for this case, RDT is a good approximation until St = 12). The interesting 

point here is that the SSG second-order closure predicts too large a growth rate whereas 

the explicit ASM based on the SSG model yields a growth rate that is far too low.  Here, 



the former problem arises from the fact that traditional pressure-strain models (see Speziale 

1996) do not apply to turbulent flows that are far from equilibrium; the latter problem is 

due to the fact that the regularization procedure used earlier by Gatski and Speziale (1993) 

does not apply to turbulent flows that are strongly strained (the eddy viscosity uT ~ 1/v* 

instead of like I/77 which explains the low growth rate). On the other hand, the standard 

K-e model renders vT ~ 0(1) which explains its enormous growth rate (the standard K-e 

model erroneously predicts that K* -» 00 as 77 -+ 00). We will present results for the new 

non-equilibrium model developed herein. The results correspond to the choice of constants 

ft = 7.0,    ft = 6.3,    ft = 4.0 (20) 

in the regularized coefficients a* - a£ given in (13)-(14). The predictions of the new explicit 

ASM for the time evolution of the turbulent kinetic energy are compared in Figure 3 with 

the RDT solution. With this new non-equilibrium extension, the results are remarkably 

improved. It is not even necessary to introduce the relaxation time approximation (from 

(18), the relaxation coefficient is large for this case, rendering its effect small on K*). In 

Figure 4, the time evolution of the normal components of the Reynolds stress anisotropy 

tensor obtained from the new relaxation model (for SK0/e0 = 50) are compared with RDT 

as well as with the predictions of the SSG second-order closure. Here again, the new model 

yields a substantial improvement, rendering results that are more properly in line with an 

approach to a one-component state predicted by RDT. Similarly good results have been 

obtained for plane strain turbulence in the RDT limit as shown in Figures 5-6 where the 

growth rate of the equilibrium model is far too large. It should be mentioned, however, that 

these results could change with time due to the fact that the relaxation coefficient CR could 

change (there are ambiguities that remain in what regularization procedure is implemented 

and how T/e is chosen in ax; for now we are taking it to be one which seems to yield good 

results). This, however, is not important; the important thing is the ideas and the fact that 

a model that can currently be used has been developed. 

Using these ideas, a non-equilibrium second-order closure model has been developed of 

the traditional form except that it has strain-dependent coefficients. This has been based 

on (19) which says that the coefficients of the rapid pressure-strain are strain dependent in 

a nonlinear way.  A generalization to the SSG model has been obtained.  The SSG model 

10 



assumes the quasi-linear form for the pressure-strain correlation (see Speziale, Sarkar and 

Gatski 1991): 

nxi   =   -(de + ClV^ij + C2e (bikbkj - -buhtSijj 

+(C3 - C;illl2)K'Sij + C4K (bi^jk + bjkSik (21) 

2    —      \ _ _ 
-^htSkiSijj + C5K{bikujk + bjkuik) 

where 
4 

Ci = 3.4, C{ = 1.80, C2 = 4.2, C3 = - 

C* = 1.30, C4 = 1.25, C5 = 0.40, IIb = &y&y. 

The Launder, Reece and Rodi (1975) model is recovered as a special case of the SSG model 

when 

d = 3.o, c* = o, c2 = o, c3 = -, c; = o, 

CA = 1.75, C5 = 1.31. 

Hence, the SSG model can be easily implemented in any computer code that makes use of 

the Launder, Reece and Rodi model (the same will be true of the non-equilibrium extension 

of the SSG model to be presented). The SSG model can then be extended to non-equilibrium 

turbulent flows - by making use of (19) - through a heuristic Pade approximation of the 

coefficients which also builds in agreement with the RDT solution for plane strain as well as 

homogeneous shear flow. The coefficients in this model take the form: 

d = 3.4,     C2 = 4.2,     C3 = 0.8 

C* -       1-8 + 0.225T/
6 = 1.3 + 8.84T?

8 

1 ~ 1 + 0.0625T/
6
 + 0.5£8      3       1 + 9.02T/

8 

1.25 + 6.33T/
6 _      0.4 + 0.114T/

6 

4 ~ 1 + 1.52T/
6
 + 0.1£7' 5 " 1 + 0.285T/

6
 + 0.5£8' 

This yields results indistinguishable from the SSG model for equilibrium turbulent flows 

where T/,^ < 1 (for homogeneous shear flow in equilibrium, T/ « 0.4 and £ fa 0.7). But in 

the non-equilibrium rapid distortion limit, where T/,£ -» oo, considerably different values 

of the coefficients are obtained. This is consistent with the findings of Reynolds (Private 

Communication) and Reynolds (1987) who found that a different form for Mijki was needed 

11 



for the rapid distortion limit compared to equilibrium turbulent flows. The way that this can 

be achieved is to let Mijki be a function of 77, £ as in (19). In Figures 7-10 (for SK0/e0 = 100 

and TK0/e0 = 50), it is shown how this leads to a much better description of homogeneous 

shear flow and plane strain turbulence for a wide range of shear and strain rates that includes 

the rapid distortion limit (the model is approximately equal to its equilibrium form in that 

limit where it does well as shown in Speziale, Sarkar and Gatski 1991). The growth rate of 

the turbulent kinetic energy and the Reynolds stress anisotropies are in considerable error 

for the equilibrium model as compared to the new non-equilibrium model which performs 

well in near equilibrium cases as well as the RDT cases considered. 

Results will also be presented for the new approach to LES which has been discussed 

in Speziale (1997b, 1998). Some preliminary LES results will be shown for the developing 

turbulent boundary layer — integrated through transition. First, a more detailed discussion 

of this new approach will be provided. The methodology we are proposing for large-eddy 

simulations has subgrid scale stress models that are of the following form: 

Tij 

K2 — 
[1 - exp(-/3A/£*r)]"ai/(77,£)—Sij -f anisotropic eddy viscosity terms.       (22) 

Thus, the subgrid scale stress is written partially in terms of filtered fields. Here, an overbar 

represents a standard filter, 77 oc (SijSij)^2K/e, ( oc (W^Wi^K/e where Sij and Wij 

are the filtered rate of strain and vorticity tensors, A is the computational mesh size, and 

LK is the Kolmogorov length scale {ax and ß are constants; ax is obtained from a Reynolds 

stress model along with the function /). Here, K and e represent the Reynolds-averaged 

turbulent kinetic energy and dissipation rate obtained from a Reynolds stress calculation 

with the two-equation models discussed earlier. These have to be obtained anyway in order 

to get an estimate of the Kolmogorov length scale LK- Since, the Kolmogorov length scale 

LK = i/3/4/e1/4 (where v is the kinematic viscosity), the dissipation rate only has to be 

estimated to within 50% with the modeled dissipation rate equation to get a good estimate 

of the Kolmogorov length scale (the dissipation rate is raised to the 1/4 power). Thus, 

this methodology requires that a RANS calculation be done in parallel with the LES. This 

will, in most circumstances, only add at most 10% to the computational expense. Here, 

we parameterize the model in terms of the Reynolds-averaged turbulent kinetic energy and 

dissipation rate since the subgrid scale turbulent kinetic energy and dissipation rate can vary 

12 



too much locally. We have written this model before in the shorthand notation as 

Tij = [1 - expi-ßA/LK^Rij 

where R{j is a Reynolds stress model that is written partially in terms of filtered fields. An 

explicit algebraic stress model is used for this purpose as given above. 

On the other hand, the Smagorinsky model takes the form: 

ra = C7s
2A2(25,Ä)1/25li 

where Cs is the Smagorinsky constant (see Smagorinsky 1963). This has several deficiencies 

in comparison to our proposed approach which can be summarized as follows: 

(1) The Smagorinsky constant is not in reality a constant. It can vary by as much as 

a factor of two or three from flow to flow. In our approach this variation is parameterized 

by the Reynolds-averaged turbulent kinetic energy and dissipation rate that are obtained 

from a RANS calculation. These are needed anyhow to get an estimate of the Kolmogorov 

length scale which is an integral part of our new methodology. We decidedly do not use the 

subgrid scale turbulent kinetic energy and dissipation rate for this purpose since they can 

vary too much. The variation of the constants can probably be adequately parameterized 

by the mean turbulent fields K and e. 

(2) The Smagorinsky model does not depend on the rotational strains through the invari- 

ant ( and, furthermore, has the wrong dependence on the irrotational strain rate invariant 

77. For Reynolds stress models in equilibrium (see Gatski and Speziale 1993) 

3 
/M) =  3 _ 27?2 + 6£2 ■ 

where we use regularized versions of this representation that avoids the singularity. The 

choice of f{q,i) oc n in the Smagorinsky model is simply wrong and probably contributes 

to the Smagorinsky constant changing so much. Furthermore, we have an additional depen- 

dence on rotational strains through £ and the anisotropic eddy viscosity term 

if 3   _            _ 
[1 - exp(-ß&/LK)}n[a2—f{V,0{WikSkj + WjkSki) 

TC3 1_  _ 
+<*3^-f(v,0(SikSkj - -SuSußij) (23) 
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where a2 and alpha3 are constants. This term accounts for backscatter effects. 

(3) The dependence on the computational mesh size A in our model is through the 

dimensionless ratio A/LK- What determines how well a computation is resolved is whether 

or not the grid size is small (or large) compared to the Kolmogorov length scale. The dimen- 

sional dependence on A in the Smagorinsky model is simply incorrect. Since we use a filter 

that yields a minimum contamination of the large scales (this is guaranteed by any filter 

with a small compact support on a 1283 mesh), a state-of-the-art Reynolds stress model 

is recovered in the coarse mesh/infinite Reynolds number limit as A/LK tends to infinity 

(LK = Rr3/4K3/2/e where Rt is the turbulence Reynolds number). On the other hand, the 

Smagorinsky model goes to a badly calibrated Reynolds stress model in the coarse mesh 

limit (the same is true of the dynamic subgrid scale model). Hence, with this methodology 

it is possible to achieve the long held dream of going continuously from a large-eddy simu- 

lation to a Reynolds stress calculation as the mesh becomes coarse or the Reynolds number 

becomes extremely large. In wall-bounded geometries, the best we can currently do - at 

extremely high Reynolds numbers - is a Reynolds stress calculation. Of course, as with 

the Smagorinsky model, the subgrid scale stress Tij -» 0 in our model as A -» 0 allowing 

a DNS to be recovered. However, here the dependence is properly parameterized by the 

dimensionless ratio of the mesh size to the Kolmogorov length scale A/LK- 

The model has now been calibrated (ß « 0.001, n « 1). In our opinion, this proposed 

approach is far superior to the Smagorinsky model or the dynamic subgrid scale model and 

holds great promise for making a major impact on large-eddy simulations. 

Computations have been conducted by H. Fasel and his group at the University of Ari- 

zona initially using an empirically based ramp function — that depends explicitly on the 

momentum thickness Reynolds number and the mesh size with a simple eddy viscosity model 

— as a preliminary test of the ideas in this new combined LES and time-dependent RANS 

approach. In Figure 11, the spanwise vorticity obtained from the LES is shown which com- 

pares favorably with the corresponding results obtained from DNS. It is clear that the subgrid 

scale model allows the LES to pick up the pertinent flow structures and to be integrated 

through transition (laminar - turbulent flow). The ramp function, which forms a central 

part of this approach, allows the eddy viscosity to gradually turn on as the flow becomes 

turbulent. In this regard, the corresponding eddy viscosity is displayed in Figure 12. These 
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preliminary results are extremely encouraging and demonstrate the potential of this new 

approach for a combined LES and time-dependent RANS methodology. 

3. CONCLUSION 

It was shown that non-equilibrium extensions of explicit algebraic stress models can be 

obtained by a two-sided Pade approximation. Explicit algebraic stress models are convenient 

because they are in the form of anisotropic eddy viscosity models. In the equilibrium limit 

they yield results that are indistinguishable from full second-order closures on which they 

are based. When formulated this, way both explicit algebraic stress models and full second- 

order closures can be obtained that can describe the far from equilibrium RDT cases of 

homogeneous shear flow and plane strain turbulence as well as benchmark equilibrium flows. 

Traditional models fail abysmally on these test cases which are basic. A new combined 

LES/time-dependent RANS capability was developed using these developments in Reynolds 

stress modeling. Subgrid scale models were developed that go continuously to state-of-the-art 

Reynolds stress models in the coarse mesh/infinite Reynolds number limit. They are more 

properly parameterized by the dimensionless ratio of the computational grid size to the 

Kolmogorov length scale - the parameter that determines how well resolved a computation 

is in the numerical simulation of turbulence. This appears to allow the long held dream of 

going continuously from an LES to a RANS to be achieved. Preliminary numerical tests on 

the turbulent boundary layer are quite encouraging. 
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Figure 1. Time evolution of the turbulent kinetic energy in homogeneous shear flow: Comparison 

of model predictions with the large-eddy simulation (LES) of Bardina, Ferziger and Reynolds 
(1983) for SK01 e0 = 3.38. (- - -) SSG Model; ( ) K-e Model; ( ) Explicit ASM of 

Gatski & Speziale (1993); (o) LES. 
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Figure 2. Time evolution of the turbulent kinetic energy in homogeneous shear flow: Comparison 
of model predictions for SK0 / e0 = 50 with Rapid Distortion Theory (RDT). (—) SSG Model; 

( ) K - e Model; (- - -) Explicit ASM of Gatski & Speziale (1993);  ( o ) RDT (Rogers 

1991). 



Figure 3.    Comparison of the model predictions of the new non-equilibrium ASM (—) for 
SK01 eQ = 50 with RDT (Rogers 1991) ( o ): time evolution of the turbulent kinetic energy in 

homogeneous shear flow. 



Figure 4 Time evolution of the Reynolds stress anisotropies in homogeneous shear flow: 
Comparison of the model predictions for SK01 £0 = 50 with Rapid Distortion Theory. (- - -) SSG 

Modei; (—) New Relaxation Model; (o, x ) RDT (Rogers 1991). 



Figure 5. Growth rate of the turbulent kinetic energy in plane strain turbulence: Predictions 

of the new relaxation model. (— New model; Equilibrium model; o DNS; x RDT). 
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Figure 6. Growth of the Reynolds stress anisotropies in plane strain turbulence: Predictions 

of the new relaxation model. (— New model; Equilibrium Model; o DNS). 



Figure 7. Predictions of the new non-equilibrium SSG second-order closure for the growth 

rate of the turbulent kinetic energy in homogeneous shear flow (— New Model; - - - Equi- 

librium Model; o RDT). 
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Figure 8.   Predictions of the non-equilibrium SSG second-order closure for the Reynolds 

stress anisotropies in homogeneous shear flow (- New Model; *   DNS; o RDT). 



Figure 9. Predictions of the new non-equilibrium SSG second-order closure for the growth 

rate of the turbulent kinetic energy in plane strain turbulence (— New Model; Equilib- 

rium Model; o DNS; x RDT). 
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Figure 10. Predictions of the new non-equilibrium SSG second-order closure for the growth of 

the Reynolds stress anisotropies in plane strain turbulence (— New Model; Equilibrium 

Model; o RDT). 
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Figure 11.  Plot of spanwise vorticity in the developing turbulent boundary layer obtained 

from LES (computations done by H. Fasel and co-workers at the University of Arizona). 



Figure 12. Plot of the eddy viscosity in the developing turbulent boundary obtained from 

LES (computations done by H. Fasel and co-workers at the University of Arizona). 


